
5466 /. Am. Chem, Soc. 1992, 114, 5466-5467 

present catalyst can be transformed readily into chiral catalysts 
of defined structure. 
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The reactions of oxaziridines with various metals, notably iron, 
have been investigated since those heterocycles were first reported 
by Emmons in 1957.' In general, single-electron transfer effects 
N-O bond cleavage to afford nitrogen-centered radical/alkoxide 
pairs, which typically undergo protonation and 0-scission or radical 
rearrangement reactions. Given the similarity of these reactions 
to radical-mediated reactions of ./V-chloroalkylamines2 and con­
temporary interest in nitrogen-centered radicals in synthesis,3 an 
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investigation of the intramolecular addition reactions of radicals 
generated from chiral oxaziridines4 was undertaken. Here, we 
report (1) conditions to effect N-O cleavage under nonaqueous, 
neutral conditions; (2) two remarkable, highly stereoselective 
reaction pathways for oxaziridine-derived radicals yielding en-
antiomerically enriched pyrrolines or aziridines, respectively; and 
(3) that the stereochemistry of the starting oxaziridine profoundly 
affects the course of its reaction. 

A survey of several organometallic reagents showed that 
[Cu(PPh3)Cl]4

5 in THF could conveniently effect the formation 
of nitrogen-centered radicals from oxaziridines.6 Therefore, a 
3-butenyloxaziridine I7 was dissolved in degassed THF with 5 mol 
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% [Cu(PPh3)Cl]4 (Scheme I). Reflux (ca. 7 h) followed by 
concentration and chromatography led to the isolation of pyrroline 
(S)-I in 66% yield and >95% ee. The optical purity of the product 
and its absolute configuration were determined by 1H NMR chiral 
solvation studies9 and chemical correlation.10 The analogous 
transformation of rac-3 -— rac-4 (59%) established the origin of 
the C-5 arylmethyl substituent in the pyrroline products, and the 
isolation of stereochemically homogeneous 6 (42%, [a]D -96.0° 
(c = 1.0, ethanol) was indicative of a high level of diastereose-
lectivity with respect to the alkene component.12 In each case, 
the reaction mixture also included a 10-25% yield of the 3-butenyl 
or 3-pentenyl phenyl ketone corresponding to the starting oxa-
ziridine. 

The high level of stereoselectivity obtained in the formation 
of 2 and 6 was surprising in light of results obtained in other 
nitrogen radical cyclization reactions.3*"1,8,0 To gain some insight 
into the source of stereochemical control, the diastereomeric ox-
aziridine lb was submitted to the same reaction conditions as above 
(Scheme II). We were astonished to find that aziridine 7 was 
formed as a single diastereomer in 53% yield, accompanied by 
only a small amount of the expected 2 in low optical purity.13,14 

The relative configuration of 7 was established by X-ray crys­
tallography. Similar treatment of Ic also afforded 7 as the major 
product. This demonstrated that the change in the C-a/C-3 
relative stereochemistry (which is the same in lb or Ic) and not 
the C-o/N-2 relationship (identical in la and lb) was responsible 
for the observed product distributions. Oxaziridines 5b and 5c 
behaved similarly, albeit with lower selectivity. 

A mechanistic outline consistent with these results is shown in 
Scheme III. Single-electron transfer1,15 (SET) to oxaziridines 
la or lb/lc should give rise to radical/alkoxide pairs 9a or 9b, 
respectively (the copper(II) ion generated during the SET step 
is depicted as the counterion for bookkeeping purposes). The high 
ee of the final product 2 requires that the cyclization 9a —* 10a 
take place with high diastereoselectivity, either in a kinetic or 
thermodynamic sense. The radical center in 10a then initiates 
ipso attack upon the aryl ring followed by 1,4-aryl migration to 
afford nitrogen-stabilized radical ll;16 formal loss of the elements 
of Cu(I) (available for another catalytic cycle) and acetaldehyde 
leads to 2. Radical 9b should add to the olefin with the same sense 
of intraannular selectivity to afford 10b. In this case, however, 
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the transition state required for phenyl transfer is disfavored, 
possibly due to steric interactions between the a-methyl substituent 
and the pyrrolidine phenyl substituent. Instead, 10b undergoes 
bond reorganization, ultimately resulting in aziridine 7. The 
absolute and relative stereochemistries of products 2, 7, and 6a 
are consistent with the observed face selectivities of the olefin 
addition reactions. 

The two reaction types reported herein constitute new departures 
in the use of oxaziridines for the stereoselective synthesis of 
heterocyclic compounds. In addition, these results provide a 
remarkable demonstration of the effect of stereochemistry on the 
fate of reactive intermediates.17 
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Whereas cycloalkynes containing five, six, and seven carbon 
atoms are kinetically unstable compounds only observed as 
transient species, they may be stabilized by complexation to metal 
atoms. In 1964 Wilkinson et al. observed the Co2(CO)8-mediated 
transformation of octafluorocyclohexa-l,3-diene to (hexafluoro-
hex-l-yn-3-ene)Co2(CO)6,

2 and more general methodologies for 
stabilizing cycloalkynes have been established by the Bennett (eq 
I),3 Buchwald (eq 2),4 and Chisholm groups (eq 3).5 A ring 
closure route involving precoordinated triple bonds has been re­
ported by Schreiber et al.6 

Attractive precursors for the thermal generation of such cy­
cloalkynes, and cycloalkenynes, are 4,5-cycloalkeno-l,2,3-sele-
nadiazoles, I.7 We, and others, have studied the reactions of 
selenadiazoles with transition metal complexes and shown that 
they are able to form a series of compounds dependent upon the 
nature of the 4,5-substituents and the transition metal complex.8 
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